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Abstract. A model for the temperature dependence of exchange bias and coercivity in epitaxial ferro-
magnetic (FM)/ antiferromagnetic (AFM) bilayers is developed. In this model, the interface coupling
includes two contributions, the direct coupling and the spin-flop coupling. The temperature dependence
arises from the thermal disturbance to the system, involved in the thermal fluctuations of magnetization
of AFM grains and the temperature modulation of the relevant magnetic parameters. In addition, the
randomness of original orientations of easy axes of AFM grains after field cooling is taken into account.
A self-consistent calculation scheme is proposed and numerical treatment is carried out. The results show
that the temperature dependence of exchange bias and coercivity is closely related to the sizes of AFM
grains and the interface exchange coupling constants. Especially, the exchange bias will have a peak and
the blocking temperature will increase if the spin-flop coupling plays a role. On the other hand, the original
orientation distribution of easy axes of AFM grains will affect exchange bias and coercivity prominently.
The prediction has been well supported by experiments.

PACS. 75.30.Et Exchange and superexchange interactions – 75.50.Ee Antiferromagnetics – 75.30.Gw
Magnetic anisotropy

1 Introduction

The existence of interfacial exchange coupling between
a ferromagnetic (FM) layer and an antiferromagnetic
(AFM) layer significantly modifies the magnetic proper-
ties of this kind of FM/AFM bilayers. The most well-
known effect is the shift of hysteresis loop of the FM layer,
called the exchange bias, which was firstly discovered in
partially oxidized Co particles more than 40 years ago [1],
then also verified in FM/AFM bilayers [2,3]. Other im-
portant effects have been observed, for example, almost
all FM layers show an increase in the coercivity, and there
exists a unusual shift in the ferromagnetic resonance [4–6].
These effects have attracted much attention due to their
application to giant magnetoresistive spin-valve heads for
high-density recording systems [7]. Many experimental re-
sults have been reported that the characteristics of ex-
change bias and coercivity in FM/AFM bilayers depend
on the constituent materials, their thicknesses, the orien-
tations of applied fields, and the temperature [2,3,8–10].
As usual, the exchange coupling can be modelled as an
exchange anisotropy field which will add vectorially to an
external field. However, magnetic devices, such as the read
heads based on the above effects, are always operated in
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surroundings of variable temperatures, so the tempera-
ture dependence of exchange bias and coercivity needs to
be illuminated.

Many experimental results [2,3,8–10] have shown that
the temperature dependence of exchange bias and coer-
civity displays some common behavior while their rela-
tive values may be different. The principal characteristics
is that both the exchange bias and coercivity decrease
with increasing temperature at lower temperatures. How-
ever, with further increasing temperature the exchange
bias generally gets smaller while the coercivity tends to
increase and reach a peak. Finally the exchange bias ap-
proaches zero and the coercivity decreases again with in-
creasing temperature up to a blocking temperature, at
which the exchange bias disappears. It is interesting that,
in some situations, one has also experimentally observed
a peak or flat in curves of exchange bias versus temper-
ature [9–12]. There are several models aiming at explain-
ing qualitatively the temperature dependence of exchange
bias and coercivity. For example, C. Hou et al. predicted
that the peaks of exchange bias of FM/AFM bilayers re-
lated to temperature are more likely to observe if the Néel
temperature is higher than the Curie temperature. How-
ever, in other situations with the Néel temperature lower
than the Curie temperature, one also find a peak or flat
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region for exchange bias vs. temperature [12]. How to un-
derstand this phenomenon seems still difficult partly due
to the details of the temperature dependence of magnetic
parameters, such as the interface exchange coupling, the
anisotropies of FM and AFM layers, and the size of AFM
grains, remain unclear. Moreover, more recently, there has
been much study of domain formation in the AFM from a
microscopic point of view [13,14]. It could be expected
that the domain formation in the AFM is crucial for
the existence of exchange bias, especially for the compen-
sated interfaces. In addition, it has been found that there
may exist different behavior for ascending and descend-
ing branches in hysteresis loops corresponding to different
reversal mechanisms [15–17].

In the present work, we will investigate the tempera-
ture dependence of exchange bias and coercivity associ-
ated with magnetic parameters of materials in order to
understand the above phenomena and to find an optimal
composition of FM/AFM bilayers to improve their per-
formance. The Fulcomer and Charap model [18] is gener-
alized to include both the bilinear (direct exchange) and
biquadratic (spin-flop) exchange couplings. While the FM
layer is assumed to be perfect with uniaxial anisotropy,
the AFM layer is composed of many AFM grains, and
each grain has uniaxial anisotropy. Furthermore, the tem-
perature dependence results from the thermal disturbance
including the thermal fluctuations of magnetization of an-
tiferromagnetic grains and the temperature modulation of
magnetic parameters. Especially, the orientation distribu-
tion of easy axes of antiferromagnetic grains resulted from
temperature driving during the sample preparation under
cooling field is considered. Based on the above model, it is
more reasonable to illustrate the occurrence of a peak in
the temperature dependence of exchange bias of FM/AFM
systems when the Néel temperature is lower than the
Curie temperature if the interface coupling includes the
spin-flop coupling.

The paper is organized as follows: Section 2 is devoted
to the model and method for investigating the tempera-
ture dependence of FM/AFM bilayers. In Section 3 the
numerical results for the dependence of exchange bias and
coercivity on the temperature and on other parameters
are obtained and discussed. Finally, a main conclusion is
given in Section 4.

2 Model and method

We first introduce the model to derive the dependence of
exchange bias and coercivity on the temperature and other
parameters for exchange coupled FM and AFM bilayers.
Our model is based on the Meiklejohn-Bean model and its
extension. As a phenomenological model, the domain wall
pinning may be combined into the anisotropy energy of
AFM grains and the domain wall motion approximately
through the effect of energy barriers for AFM grains with
different sizes. Then our model is to consider that the FM
magnetization and AFM net sublattice magnetization to
be uniform due to the fact that almost all experiments
have been done in magnetic fields high enough to saturate

the FM magnetization, while AFM grains have superpara-
magnetism. An FM/AFM system is now composed of one
perfect FM layer coupled to N AFM grains which are ar-
ranged in a layer. The thickness tFM of the FM layer is
thin enough that there is no any domain walls inside the
ferromagnet. All AFM grains have the same height d but
different interface areas Si. All spins in each grain are as-
sumed to behave coherently, because all the AFM grains
are assumed so small that they can be taken as single
domains. On the other hand, individual grains are con-
sidered with cylindrical symmetry, so the contact surface
between each pair of grains appears small, and the con-
tribution from the interaction of intergrains is neglectable
compared with that of innergrains. Additionally, the in-
tergrain coupling will hinder the reversal of a grain under
an applied field, it is possible to combine this effect into
the anisotropic parameters. Therefore, for simplicity, it is
also assumed here that there is no any interaction between
the AFM grains, but exchange couplings exist between
the FM layer and individual AFM grains. The behavior
of AFM grains is closely related to their superparamag-
netism. Furthermore, both the FM layer and AFM grains
have only uniaxial magnetic anisotropies with the FM easy
axes parallel to the same direction of the external field.
The interface is considered to lie in the x-y plane with
the z axis normal to the interface. All magnetization and
applied field are assumed within the x-y plane.

Many experiments have confirmed that there is no heli-
cal structure along the z axis in a thin FM layer. For exam-
ple, Parkin et al. [19] have observed that a uniform mag-
netization distributed throughout the thickness of a 400 Å
Ni80Fe20 layer coupled with a Fe50Mn50 layer. In fact, an
early theoretical study also suggested it [20]. Therefore,
we can believe that the FM moments rotate uniformly in
the presence of an applied field. In general, the bilinear
coupling between the ferromagnet and antiferromagnet
play a dominating role for exchange bias [2,3]. However,
for a large amount of FM/AFM systems, it is attested
theoretically and experimentally that the existence of a
90◦ angle coupling between magnetization directions at
FM/AFM interface is normal and is shown to be related
to the well-known “spin-flop” state [21–26], which is due to
the frustration of spins at the interface, i.e., the interfacial
AFM moments will tend to align themselves perpendicu-
lar to the FM easy axis. This spin-flop state contributes
a biquadratic coupling to FM/AFM bilayers. Theoretical
works have shown that the biquadratic coupling cannot
be responsible for exchange bias but contribute to coerciv-
ity. However, when both bilinear and biquadratic coupling
terms exist in FM/AFM bilayers at the same time, the
exchange bias will be perturbed by the biquadratic term
while it is mainly determined by the bilinear coupling.
Even for a partially compensated interface, the exchange
bias can be affected by the biquadratic coupling [27–30].
We therefore consider that such a spin-flop configuration
could occur in our FM/AFM bilayers, and investigate its
implications. So, in the present model, the bilinear as well
as the biquadratic interface coupling terms are taken into
account.
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Based on the discussion above, the total energy of an
exchange coupled FM/AFM bilayer in the presence of an
applied field H is given by

E = KFMSFMtFM sin2 θ − HMFMSFMtFM cos θ

+
N∑

i=1

[
KAFMSid sin2 φi − f(αi)JE1Si cos(θ − αi − φi)

+ f(αi)JE2Si cos2(θ − αi − φi)
]
, (1)

where KFM and KAFM are the uniaxial anisotropy con-
stants of the FM layer and AFM grains, respectively;
θ, φi and αi are the angles between the FM magnetization
and the FM anisotropy axis, the AFM sublattice magneti-
zation and the AFM anisotropy axis of the ith grain, and
its AFM anisotropy axis and the applied field which is
collinear with the cooling field, the subscript i is summed
over all AFM grains; f(αi) is the distribution function for
the occupied probability of the ith AFM grain with its
easy axis deviating from the cooling field denoted by αi,
which depends on the sample’s preparation, and the nu-
cleation process of the AFM layer under the cooling field;
MFM is the saturated magnetization of the FM layer with
its interface area SFM and thickness tFM. The first term in
equation (1) is the uniaxial anisotropy energy of the FM
layer, while the second term is the Zeeman energy. In the
square bracket in equation (1), the first term is the uniax-
ial anisotropy energy of an AFM grain; the second term is
the direct unidirectional coupling energy with the bilinear
coupling constant JE1; the third term is the spin-flop cou-
pling energy with the biquadratic coupling constant JE2,
and in general, JE1 � JE2.

At equilibrium, the first derivative of the total en-
ergy E with respect to the angle φi must be equal to
zero. From equation (1), we can obtain a set of equations
satisfying energy minimum, which determine the angle φi

under fixed values of θ and αi. Actually there are two val-
ues of φi for any given values of θ and αi to satisfy the
energy minimum equations. This means that when the
magnetization of the FM layer rotates around, each AFM
grain has two stable states in all possible directions of its
magnetization. Hereafter, we call these stable states cor-
respondingly with “state 1” and “state 2”, respectively. In
order to obtain the equilibrium energy of the system for
fixed values of θ and αi, we should know the occurrence
probability of both state 1 and state 2 of each AFM grain
magnetization. Using Ei1(2) to denote the energy of the ith
AFM grain in state 1 (2), we can get the probability of
this AFM grain magnetization in state 1 as

pi1 = 1/ {1 + exp[(Ei2 − Ei1)/kBT ]} . (2)

The probability of its AFM magnetization in state 2 de-
noted by pi2 is obtained by the condition pi1 + pi2 = 1.
Then statistically the equilibrium energy of the ith AFM
grain can be written as

Ei(θ, αi) = pi1Ei1 + pi2Ei2, (3)

where αi could be distributed from −π/2 to π/2. However,
for a certain deposition temperature under which the sam-
ple is prepared after field cooling, a set of αi, i.e., f(αi),

is determined. The total equilibrium energy of the sys-
tem is obtained by summing over individual energies of all
grains with the probability distribution of their anisotropy
axes f(αi), so

E(θ) =
N∑

i=1

∫ π/2

−π/2

(pi1Ei1 + pi2Ei2)f(αi)dαi. (4)

It is important to note that E(θ) should be obtained
by Ei(θ, αi) self-consistently. This means that the total
energy E(θ) must reach the minimum value for different
distribution αi. This is fulfilled by numerical calculations.

Now the total energy E(θ) is determined by the mag-
nitude and the orientation of an applied field. By min-
imizing the total energy E(θ) in any fixed value of the
applied field, we can make clear the magnetization pro-
cess of the FM/AFM bilayer. Then according to refer-
ence [31], we can calculate coercivity and exchange bias.
In the process of our calculations, the energy is scaled
by KAFMdSFM, i.e.,

ε(θ) ≡ E(θ)/KAFMdSFM = kFM sin2 θ − h cos θ

+
N∑

i=1

{si sin2 φi − f(αi)j1si cos[θ − (αi + φi)]

+ f(αi)j2si cos2[θ − (αi + φi)]} (5)

where kFM = KFMtFM/KAFMd, h = HMFMtFM/KAFMd,
si = Si/SFM, j1 = JE1/KAFMd, j2 = JE2/KAFMd.
The coercivity and the exchange bias are scaled by
MFMtFM/KAFMd.

For a real sample, AFM grains have a rather continu-
ous distribution in their sizes over a certain range. Typ-
ically, we assume that the sizes of AFM grains exhibit
log-normal distribution [32]

P = C exp
{−[ln(si/s0)]2/8σ2

}
, (6)

where s0 = S0/SFM is the reduced average area in
which S0 is defined as the average area for all AFM grains;
C and σ are two constants. It is reasonable to take C = 1,
σ = 0.27. In fact, the number of AFM grains N is variable,
but is satisfied by Ns0 ≡ 1.

There are two advantages of our model compared to
previous work [11,18,32–34]. Firstly, there is a competi-
tion between the bilinear and biquadratic terms, which
may provide versatile choices for the exchange bias effect.
It means that the interface is treated as partial compen-
sation by the biquadratic coupling. Secondly, the ther-
mal fluctuation of magnetization of AFM grains as well as
the original orientation distribution of easy axes of AFM
grains after field cooling are considered and determined
self-consistently. Especially, the latter is exactly new and
more practical compared to the previous work [34].

3 Numerical results and discussion

In the numerical calculations, we take the reduced values
of the magnetic parameters (such as kFM, si and j1(2) etc.)
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just for convenience to describe both FM and AFM layers.
Obviously, the values of these related magnetic parame-
ters used in the numerical calculations are not arbitrary,
but instead determined by exchange and anisotropy en-
ergies associated with the antiferromagnet and interface
in real materials. So to assure the reasonableness of our
theoretical approach, we would adopt the related values
of magnetic parameters based on the Ni80Fe20/Fe50Mn50

bilayer. In the present FM/AFM system, it is assumed
that the Curie temperature of the ferromagnet is much
greater than the Néel temperature of the antiferromagnet
as usual. Thus, the temperature relation of AFM magne-
tization and the magnetocrystalline anisotropy will domi-
nate the temperature dependence of exchange bias and co-
ercivity. In contrast, it has no problem to assume that the
FM magnetization and its magnetocrystalline anisotropy
are independent of temperature.

In our model, two contributions are included for the
temperature dependence. The first is associated with mag-
netic parameters, such as the exchange couplings at the
interface and the uniaxial anisotropy of AFM grains. The
second is involved in the superparamagnetism of AFM
grains. For the former, it may be reasonable to consider
that the temperature dependence of magnetic parame-
ters for AFM bulks is still available to grains when their
sizes are larger than several nanometers. It is found in the
Stoner’s theory that the AFM magnetization MAFM ∝[
1 − (T/TN)2

]1/2 [35], which can be used to specify the
AFM anisotropy KAFM ∝ M3

AFM, the interface exchange
couplings JE1 ∝ MAFM, and JE2 ∝ M2

AFM [11], where T is
the temperature of the system, and TN is the Néel temper-
ature. For the latter, the original distribution of easy axes
of AFM grains for samples prepared after field cooling is
considered and determined self-consistently, and thermal
disturbance of magnetic states of AFM grains is described
by equations (2) and (3).

The numerical result of the distribution f(αi) is shown
in Figure 1. It is clear that the distribution f(αi) is differ-
ent for different depositing temperature TD under which
samples are prepared. As shown in Figure 1, we can find
that at higher deposition temperature the easy axes of
grains can be taken as randomly distribution in x-y plane,
but at lower deposition temperature the easy axes of
grains are mainly laid on the cooling field direction. We
find that f(αi) is generally a little similar to the canonical
distribution. This is reasonable. For a given sample, when
the measured temperature increases the FM magnetiza-
tion will be reduce, but the distribution f(αi) is almost
fixed. In the following calculations to investigate the tem-
perature dependence of exchange bias and coercivity, we
take kBTD/KAFMS0d = 1.0.

For various average sizes of AFM grains, the tem-
perature relations of exchange bias and coercivity are
shown in Figure 2. With increasing the sizes of AFM
grains, both the exchange bias and coercivity increases
at any temperature. In addition, the blocking tempera-
ture at which the exchange bias disappears also increases.
Namely, there is size dependence for the blocking temper-
ature. These results are in agreement with experiments

Fig. 1. Orientation distribution f(αi) of AFM easy axes for
different depositing temperatures.

qualitatively [36,37], and illustrate that the pinning effect
of the AFM layer for the occurrence of exchange bias is of
key importance. Without the biquadratic coupling the ex-
change bias always decreases monotonously with increas-
ing temperature, which is in good agreement with experi-
mental measurements. Also with increasing temperature,
the coercivity firstly decreases distinctly, then increases
and approaches a peak at around the blocking or Néel
temperature, finally decreases again. However, when there
is a biquadratic coupling at the interface between the FM
and AFM layers, the curve shape of the temperature de-
pendence of exchange bias becomes convex as shown in
Figure 2b, while the coercivity increases at any tempera-
ture as shown in Figure 2d, and the blocking temperature
increases as well. A possible explanation would be that
the biquadratic coupling leads to increase the FM mag-
netization inhomogeneity, which is responsible for more
effective pining in higher temperature. FM/AFM bilayers
with large exchange bias and high blocking temperature
are very applicable to design magnetic devices.

The calculated results of the temperature dependence
of exchange bias and coercivity for various values of the bi-
linear coupling are shown in Figure 3. The coercivity grad-
ually increases with increasing the bilinear coupling (see
Fig. 3b), but the exchange bias increases more distinctly
(see Fig. 3a). However, it is found that when j1 ≥ 2.0, the
AFM layer will follow the reversal of the FM layer, and
results in a nonbiased hysteresis loop and a large measur-
able coercivity, as pointed out by our previous result [30].
For small bilinear coupling, there are obvious peaks for
exchange bias and coercivity if the biquadratic coupling
plays a role. For the larger bilinear and special biquadratic
couplings we can observe a large temperature region in
which both the exchange bias and coercivity are almost
unchangeable, which is also useful for the performance of
magnetic devices. Moreover, as shown in the insets, we
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Fig. 2. Exchange bias (a), (b) and coercivity (c), (d) vs. temperature for the parameters kFM = 0.5, j1 = 0.5.

find that the consideration of the original orientation dis-
tribution of easy axes of AFM grains is useful to the oc-
currence of a plateau or broader peak in curves of coerciv-
ity or exchange bias vs. temperature, especially for larger
bilinear coupling. This is a particularly interesting result
compared with the previous work [34]. The results that
there is a peak for coercivity near the Néel temperature
and a narrow plateau for exchange bias in certain tem-
perature range can be used to illustrate R. Jungblut’s ex-
periment qualitatively [12]. In fact, in R. Jungblut’s case,
the [111]-oriented samples display a biquadratic interlayer
exchange coupling due to monoatomic steps at the inter-
faces [23,38].

In order to investigate the effect of the biquadratic
coupling, we have also calculated the temperature re-
lations of exchange bias and coercivity for different bi-
quadratic coupling as shown in Figure 4. With increase
of the biquadratic coupling, we find that the coercivity
increases near zero temperatures but decreases at higher
temperatures, while the exchange bias always decreases
at any temperature. Interestingly, for certain temperature
region as shown in Figure 4b, the coercivity almost un-
changes while the exchange bias decreases with increasing
biquadratic coupling, but there is a narrow plateau (see
Fig. 4a). It suggests that the biquadratic coupling should
be limited in order to obtain practicable exchange bias
and lower coercivity.

Finally, it is interesting to note from our calculations
that when the Curie temperature is not much greater than
the Néel temperature, the peak of the coercivity always
appear, no matter whether the biquadratic coupling is
there or not. In this case, the FM magnetization will also
depend on the temperature as the AFM magnetization.

4 Conclusion

We have presented a model and calculations to investi-
gate the temperature dependence of exchange bias and
coercivity that come from the exchange coupling at the
interface between an FM layer and an AFM grain layer.
In the present model, the FM layer is considered perfect
with uniaxial anisotropy while the AFM layer consists of
many independent AFM grains which are single-domain
like. The interface coupling includes two contributions, the
direct coupling and spin-flop coupling. The temperature
dependence results from the thermal activated transition
between the equilibrium states of AFM grains, and the
temperature modulated relevant magnetic parameters. It
is interesting and more practical that the original distribu-
tion f(αi) of easy axes of AFM grains from sample prepa-
ration after field cooling has been considered. Meanwhile,
a self-consistent calculation scheme is established, and the
self-consistent numerical results show that f(αi) is very
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Fig. 3. Exchange bias (a) and coercivity (b) vs. temperature
for the parameters kFM = 0.5, s0 = 16 × 10−6, and j2 = 0.05.

similar to the canonical distribution. In general, at low
temperatures, the AFM state in each grain is stable as the
FM magnetization rotates and results in higher exchange
bias and coercivity. But with increasing temperature they
decrease due to the fact that the AFM state becomes un-
stable. Moreover, in the case that the Curie temperature
is much greater than the Néel temperature and there is a
biquadratic coupling, the peak of the exchange bias and
coercivity can appear simultaneously. Otherwise, the ex-
change bias always decreases with increasing temperature
while the peak of coercivity still exists. These results are
well confirmed by the experimentally observed peaks or
upward inflections in the curves of the temperature de-
pendence of both exchange bias and coercivity. For cer-
tain values of bilinear and biquadratic couplings, there are
wide plateaus in which the exchange bias and coercivity
are almost independent of temperature, and the orienta-
tions distribution of easy axes of AFM grains seems to be
useful to induce the plateaus of exchange bias and coer-
civity to occur. This fact is useful for designing magnetic
devices.

Fig. 4. Exchange bias (a) and coercivity (b) vs. temperature
for the parameters kFM = 0.5, s0 = 16 × 10−6, and j1 = 0.5.
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